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F.ffective damping of relative craft oscillations in a single-flywheel uniaxial attitude con- 

trol system whose purpose is to keep a spacecraft oriented in some direction in space, e.g. 

towards the Sun, can be achieved by nonrigid coupling o f its body with the axis of rotation 

of the flywheel [ 11. This can he accomplished by adequately restricting two of the degrees 

of freedom of the flywheel in a three-degree universal suspension by means of a proportional 

damper of any type. 
In the present paper we shall con-,ider the jtahility of free oscillatio-s of a spacecraft 

equippe,I with a flywheel on a movahlr axis, ns we!1 as the motioci of the oriented craft 
axis under the rction of external pertori,ini; moments arlrl the.pertorbetl mot;o~ of the craf 

itself relative to the oriented axis. 

1. Rasic equations. Unperturbed motion. I,et the frame of the spacecraft 

ilc crrrnected with t!te system of axes Cxyz which we consider to he the central system for 

the frame and for all the attached movable bodies considered as point masses. The latter 

include the flywheel with its srl-pension elements. Fe assume that it is the z-axis of the 
spacecraft which must ix? directed to,.iards the Sun. 

I,et us begin with the simplest formulation of the problem in which we assume that tire 
oscillations of the z-axis of the craft relative to the solar direction and of the axis of rota- 

tion of the flywheel relative to the craft body are small. If the axes C, .xryr zt (where the 

axis z t is directed along the axis of rotation of the flywheef which experiences small oscil- 

lations in the axes x~z), then the orientation C, rlyl zt relative to the axes Clxyt can be 

readily defined in terms of the Krylov angles art .q, , q,. 
Applying precession theory, i.e. neglecting the equatorial components of the kinetic 

moment of the flywheel as well as the kinetic moments of its suspension elements, we ob- 

tain the simplest equations of rotational motion of the spacecraft in the form 

rfere A, B, and C are the principal centra1 moments of inertia of the craft with the attach- 
ed point masses: c+)~, oy, and o, are the projections of the absolute angular velocity vector 

of the craft; W,, My, and .M, are the projections of the vector of the principal moment of the 

external forces relative to the point C; H is the characteristic kinetic moment of the flywheel. 
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I!enceforth we shall confine our attention to the case of steadystate motion of the flywheel 

(H = const). 

The equations of precessional motion of the flywheel rotor under the above assumptions 

can be reduced to 

- H (&idr + or, - oral) = Ql, N (dw’dt - ox + O$I) = Qz (1.2) 

where the generalized forces Qt and Qz are determined largely by the elastic and damping 

moments of the shock absorbers of the flywheel suspension and by other resistance moments 

acting along the corresponding axes of rotation of the universal suspension. If the flywheel 

suspension is restricted by the shock absorbers according to a linear law, we can assume 

that 

QI z - h da1 I dt - kal, 42s - h c$, i dt - k& (1.3) 

where h and k are the damping and elastic constants on the flywheel suspension axes. 
If we introduce some system of the solar tracking axes Cnoyo zo and define the orienta- 

tion of the spacecraft axes Czyz in this system in terms of the same Krylov angles a, I?, 

and cp, then the expressions for the projections of the absolute angular velocity of the 
spacecraft on its axes xyt in (1.1) and (1.2) become 

~x=-_COs~+(~,-R,)cosasincp (1.4) 

where the small quantity no = 0.986O/day is the angular velocity of the Earth’s motion 
around the Sun (we assume that the spacecraft moves in an orbit around the Earth). 

Henceforth we shall assume that the spacecraft is dynamically symmetrical, i.e. that 

A = B. Let us introduce the following complex variables and dimensionless parameters into 

our investigation: 

w = 0, + io,, 7 =- - u* + ip,, E = 2, h-1 zz g , 

Eqs. (1.1) to (1.3) then become 

A dw 

For unperturbed motion in the absence of external moments we have 

0, = const (1.7) 

and system (1.6) assumes its simplest form, becoming a system of linear differential equa- 
tions with constant and complex coefficients. The necessary and sufficient conditions of 

stability of the solutions of system (1.6) with complex coefficients in the presence of dam- 

ping in the flywheel suspension are the inequalities 121 

l+kr+o,>O, (1 -t EON) (klji - (1 - Ef OJ - c@ (1 - E)) > 0 (1.8) 

For unperturbed motion, conditions (1.8) serve to interrelate the inertial parameters of 
the craft (E 5 I), the value of the kinetic moment of the flywheel (H > 0). the rigidity para- 

meter of the restriction in its suspension , and the rotational velocity of the body about the 
oriented axis in such a way as to permit stable damping of the craft oscillations about the 
direction of orientation. In dimensional parameters (1.5) the stability domains are given by 
the inequalities 

1 
%>---, o”>-(kl+*), h-l> 

(I --e)o# 

‘I - (1. -E) 00 , 
UPon fulfillment of conditions (1.9) the roots Zi of the characteristic equation of system 
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(X.6) (which is a second-order system with complex coefficients) can be determined from 
Formulas 

2% = -g (hz + ims) for fs>O 
(1.10) 

in which we use the notation 

dl=l-(I-e)oo, d~=l-j-k~+oo (1.11) 

i~=~[($$qt)~ - (&2-dl)2] -&[kld~--(l-e)Q1] 

1 
+krdr-((1--e)oo” 

The roots of initial fourth-order system (1.1) to (1.3) are determined by the values of 
4 snd of the conjugates i, (i = 1, 2). Since d, > 0 by virtue of stability conditions (1.9), 

and since r(fr2 + f12)1/2+ f,] r/a> 0, the real part of the roots of minimal absolute value 

is determined by the value of ht. This quantity can be optimized by suitable choice of the 
system parameters, which in turn guarantees the most rapid damping out of the oscillations 
of the flywheel axis and of the oriented axis of the craft. On termination of the transient 
process in unperturbed motion the longitudinal axis of the craft does not coincide exactly 

with the direction of the Sun, but rather with the direction of the moment-of-momentum vec- 

tor of the system (we neglect the slow motion of the Earth relative to the Sun) which dif- 
fers from the solar direction by the angle 

5, = & i(Caf + HI 50 i- Hqo + iA&ly 

(see Notation (2.1)). The craft rotates about its longitudinal axis with the velocity c@/dt = 
= const. 

2. Perturbed motion of the oriented axis. In perturbed motion the right 

sides of Eqs. (1.1) contain the moments of gravitational, aerodynamic, magnetic, and other 
forces. Introducing the complex coordinates 

p = - u + ip, w = (dLJd2 + in,,) e-iv (2.1) 

and making use of the matrix /I a,, ‘11 of d irection cosines between the axes X~Z of the 

craft and the solar tracking axes zo, yo, I,,, we can rewrite Eqs. (1.6) of craft and its ori- 

entation system motion as 

Since we are considering an oriented object, the expressions for the projections of the 
moment of external forces in (2.2) can be represented as a sum of two moments. The first 
of these depends on the motion of the coordinate system in which the object must be orien- 
ted and on the angle q of characteristic rotation of the craft the second moment depends 
on this motion and on the orientation of the craft relative to the chosen coordinate system. 

We can illustrate this for the gravitational force moment. For a dynamically symmetrical 
body 
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M, z 3 -$ (C - .4) 6%63, M, z 3 -$ (J - C) 6,6e, M,=O (2.3) 

where p is the gravitational constant, r is the distance between the attracting center and 
the point C, and a1 are the direction cosines of r relative to the craft axes Czy~ which are 

given by 

‘i = Pt/3it + ttzPi2 -1 PzPt? (pi = ai cos u + bi sin u) (i = 1, 2, 3) (2.4) 

Here a is the angle of true anomaly of the craft and ai, b,, and c, are the direction CO- 

sines between the solar tracking axes and the system of axes z *, y *, z * related to the or- 

bit in such a way that X* and y * lie in the orbit plane (z * being directed along the line of 

nodes, y * along the direction of craft motion, and z * perpendi.cularly to the orbit plane); 

a,, b,, and c, are slowly varying functions which depend on the orientation of the orbit rela- 

tive to the solar tracking axes. After some uncomplicated operations, the expression for the 
gravitational force moments in (2.2) becomes (2.5) 

(M, + iM,) eiO = - 3~4 (1 - 8) WI’ &I (pi - $1) + [1 - 3/Z (tV + lt?)]2 g + */? (ttr + itt$t} 

(0, = tt / rs) 

From now on we shall assume that the craft is in circular orbit (i.e. that O+ = const). 

In the general case where the object is characterized by some asymmetry (dynamic, mag- 

netic, or aerodynamic) the general expressions for the projections of the moment of external 

forces for motion of the craft along an arbitrary orbit become 

N 

(M,+iM1l)ei’P=m x (J$+iRL)eir7, MZ=mr 5 (JRcoskqfBksinkrp) (2.6) 

1. =o k=l 

to within terms of the zeroth order of smallness. 
Here the parameters m and m, characterize the magnitudes of the moment of external for- 

ces; Pk, Rk’ A,, and L$ are periodic functions of the latitude argument and can be expres- 

sed as finite sums of the sines and cosines of this argument, 

M nT (2.7) 

P, = pok + x (P,$; cos vu + qVf.. sin vu). R, = rok + 2 (rVk cos vu + sVk sin vu) 

V‘lt-1 &i‘ 

A, = aok + 5 (aVk cos vu + cvk sin vu), 

M 

B, Y bok + x (bul; cos vu + d,, sin vu) 

v-1 VZl 

which are valid in practically all cases. 
For example, the moment expressions for-the gravitationa force moment acting on a dyn- 

amically asymmetrical object (A f B 4 C) become 

M, = 3 (B - A) 0.I 1% @Z - p12) sin 2q + plpa cos 2qj (2.8) 

The upper limits of the sums in the right sides of Formulas (2.6) and (2.7) can practi- 
cally always be assumed to be positive integers. Their values are determined by the degree 
of accuracy with which the external force moment is computed. The numbers N and M are 
usually small. Thus, we find from the above formulas that for the gravitational force moment 

N = 2 and M = 2; for the magnetic force moment under the usual assumptions we have N = 2 

and M = 4. The case of the aerodynamic moment is more complex, since here the sums in 
the right sides of (2.6) and (2.7) are sums of several of the initial terms of a Fourier series 
Our computations for a specific spacecraft geometry showed, however that even here it is 
sufficient to take only a very small number of harmonics in the expansion. 

We can estimate the effect of terms of zero order of smallness in the expression for the 
external force moment on the deviation of the z-axis of the craft from the solar direction 
under the condition that d q/dt = const. This effect is determined by the following particu- 
lar solution of system (2.2): 
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(2.9) 
The above solution is associated with the zeroth harmonic (k = 0) of expansion (2.7), i.e. 

with the moment of forces acting on an ideally symmetrical craft. In particular, in the pres- 

ence of the gravitational force moment alone 

t* = i [- no + 3AH(;l;ej$a c3 (Ca - iq) t 
I 

(2.10) 

Rewriting expansion (2.7) in the form 

(M,+iM,)P=m $ @or: + i’ok) c 
il.Q 

+ (2.ll) 
li=o 

NM 

we note that in the resonance case for kb = fvzi expansion (2.11) contains not only the 
zeroth harmonic, but also an additional constant which alters solution (2.9) quantitatively 
only. 

Consideration of the effect of the components of the external moments dependent of the 

orientation of the craft entails investigation of differential equations with variable coeffi- 

cients. With allowance for the gravitational force moment these are of the form (2.2) and 

(2.5). The unknowns 5, 4, 7, and 71 in this case can be determined from system (2.21, (2.6) 

and the analogous system for conjugate quantities with periodic and complex coefficients, 

since in accordance with (2.4) the functions CL, are periodic and vary with the frequency of 

revolution of the craft along its orbit. 

We can show that the system with periodic coefficients under consideration doeo not 

have a stable periodic solution. In fact, for system (2.2), (2.5) and the associated method 

of successive approximations we can construct a periodic solution in the form of a series 

in powers of a small parameter 

PO = 30.2 (1 - e) (2.12) 

which for po = 0 becomes some constant solution associated with the zero root of the funda- 

mental equation of system (2.2). Omitting the actual computations, let us cite some results 

for the case no = 0. The complete solution of system (2.2), (2.5) can be represented as the 
sum of some forced periodic solution whose stability is being investigated and of an arbi- 

trary solution, i.e. as 

4 -- 
dt - tb~(&!Co 2 s u’t + eo sin 2u’t) + y+ 

PLp&l*d~ 

q = ~0 (03 cos 2u’t + es sin 2u’t) + t~~e~‘~i@‘) 

Do = - 
ic3 (Cl + i&J 

1 - 2cs3 (2.13) 

Here Do is the solution which is constant for periodic motion and which the motion un- 

der investigation becomes for cc0 = 0. The expressions for the constants D,(l), D,, and e, , 
which are completely determined, will not be given here; aI are the characteristic indi- 

ces of the solutions corresponding to the critical roots of the system of equations in varia- 

tions for system (2.21, (2.5) in the new variables yr. 
Construction of the periodic solutions y, in series form for the equations in variations 

also enables us to determine [3] the approximate values of the characteristic indices at&-,) 

in the form of series in powers of ,uo. The expressions for the characteristic indices can be 

reduced to the form 

ai @o) z at + po [-- (I - c39 (1 - 3c33) m* + w*] + . . . 
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(2.14) 

Here n* is some real number and m > 0. 
From (2.14) we find that the periodic solution under investigation is bounded in the 

first approximatron only if the inequality 

2c,2 - I> 0 (2.15) 

is fulfilled. 
The stability of this motion is determined by the following approximation of the charao 

teristic index. However, when inequality (2.15) is fulfilled we have 

Re II-W (PO)1 = - PO* (f - car) (1 - 3c& m, > 0 

i.e. the periodic motion under investigation is unstable and the oriented axis deviates from 
the solar direction at a rate proportional to the square of the small parameter bo. In the 
genera1 case the deviation of the oriented axis is determined by the solution of inhomogene- 
ous Eqs. (2.2) and (2.5) which increases with time. 

unfortunately, investigations of the stability of periodic motions with allowance for 
perturbing moments of other types (aerodynamic, magnetic, etc.) dependent on the orienta- 
tion of the craft are practically impossible without additional limiting assumptions concer- 
ning the craft design. 

3. Motion about the oriented axis. In solving the above problems we assu- 
med that dq/dt = const. if the spacecraft is in some way asymmetrical, then the angular 
velocity of its rotation about the oriented axis varies in accordance with the equation 

C$LrnL $( Ak cos kq~ + Bk sin kv) (3.1) 
k=l 

where A, and B, are periodic functions of the angle of the latitude argument of the craft 
position; they are defined by Formula (2.8). 

It is interesting to investigate the effect of a small external moment m, on the variation 

of the angular velocity dT/dt under the assumption that the quantity dq/‘dt is of the same 

order as the angular velocity uo * of revolution of the spacecraft along its orbit. 

Eq. (3.1) becomes 

d’cp 
-2F 

where pa is a small 

me shall attempt 

small parameter cc,, 

N 

= &,u’~ 2 (Al cos kq + Bk sin kg) 

h=l 

dimensionless parameter. 

to find the solution of Eq. (3.2) in the form 

For the successive approximations we have Eq. 

Here 

13.2) 

of a series in powers of the 

(3.3) 

&p(o) 
-y@- = 0, 

) . . . 

&$m) 
. . .) - z= uo’” [Irp-) + F (‘p+-2). cp-3), . . ..( qD)] 

dP 

k2p (Ak cos ktp(‘) + Bk sin k$‘)) 

h=l 

(3.4) 

(3.5) 
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I 2pt1 k2pf’ (- Ak sin kc$‘) + Bk cos h-q(‘)) 

k=l 

In these functions cP(O) is the zeroth approximation of solution (3.3), i.e. the solution 

of Eq. (3.2) for cl0 = 0, 

cp (0) = xr + x (x, x = const) (3.6) 

The motion for which the quantity dq/dt remains bounded corresponds to the periodic 
solution of Eq. (3.2). We therefore pose the problem of determining and investigating the 

stability of periodic revolutions (of period T) of the revolutions of the satellite along the 

orbit of the solutions of Eq. (3.2). 

The condition of periodicity of the first-order approximation d9Xl)/dt, i.e. the condition 

T 

s 
loch=0 (3.7) 

0 

is fulfilled if x is a multiple of the frequency of revolution of the satellite along its orbit, 

i.e. if 

x= nu,, n= 0, f 1, . . . (3.8) 

Three types of periodic motion are possible in this case: 

1) II = 0, (uok cos kX + bok sin kx) i- . . . $ (aoN cos NX + b,, sin Nx) = 0 
2) n = +ylk, (a,k + d,,k) CO9 (Yuo - kx) + (C,,k - bvk) Sh (VU0 - h) = 0 

n= -vlk, (%k - 4k) COS (vu0 f kx) -I- (c,k + b,J sin (vu0 -I- &) = 0 (3.9) 
3) n # 0, n # f v/k 

The first case corresponds to zero angular velocity for ~0 = 0 and requires special atten- 

tion. The second type is associated with a finite number of solutions, since the numbers v 

and k are bounded. By the same token the third case subsumes an infinite set of solutions. 

Denoting the result of double integration of the functions 120 and IzP+t for periodic mo- 

tion to within the constant factor (u. ‘)-2 by 120* and ZzP+t*, we can write the expression 

#p) = 
- z,+ + cpt + c (1) 

2 (3.10) 

where C\‘) and C(?‘) are integration constants. 

The condition of periodicity of the second-order approximation d@*)/dt implies that 

T T 

HIT + CJ’)J2 (T) + CPJl (T) = 0 (J1 (T) = 1 zrcEt, .I2 (T)= $ z,t dt) (3.11) 

0 0 

where H, is a constant which is the product of the two periodic functions IO* and I,. If the 

periodic function I, has a constant component I,, , then the solution of Eq. (3.11) can be 

written as 

Cl(l) = 0, C,(t) = HI / II, (3.12) 

On the other hand, if I, does not contain a constant component, then 

Cl(l) = HIT / J, (T) (3.13) 

while the value of C(l) remains undetermined. Solution (3.12) is theoretically possible only 
for the first two cas,‘s of (3.9) and enables us to construct a solution in which dq(*)/dt and 

‘PC*) are periodic functions. Solution (3.13) corresponds to the third case, and, as we shall 

show below, in certain cases to the first case of (3.9); the solution @*) is an aperiodic 

function. 
Making use of the above procedure for constructing higherorder approximations, we can 

obtain the solution of initial Eq. (3.2) either in the form 

!!JL= 
dt 

x+ g (-1)m porn +- (3.14) 

m=1 
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cp=xt+x+ 5 wrom(n,-~) for Itef 0 

rn=l 

or in the form 

(3.15) 

where n, and n,’ are periodic functions which include several sine and cosine functions 

of frequencies which are multiples of the frequency u. , the quantities H, and H,’ are 

constants. 
If Q = ‘p* is a solution of either of the forms (3.14), (3.15). then the equation in varia- 

tions for initial Eq. (3.2) becomes 

d% 
dt”- = po~o'2'll('p*)z (3.16) 

where for solution (3.14) the function 

11 &I’) = zr (‘p(O)) - flaq(t)z, (‘p(O)) + . . . (3.17) 

is a periodic function of time, while for solution (3.15) the quantity It(q)*) is a bounded and 
continuous, but aperiodic, function of time. 

The method for investigating the stability of periodic motions of the (3.14) type, when 
equation in variations (3.16) has periodic coefficients, is described with sufficient detail 
in [3]. Carrying out all the required operations, we can establish that in the case under con- 
sideration the equation in variations has a bounded solution only for 

I10 < 0 (3.18) 

If II is an aperiodic function of time, then equation in variations (3.16) can be writ- 

ten as a system of two Eqs. 

dz,ldt = z,, d;,ldt = /.L~u~‘~ZI (cp’) ZI (3.19) 

Considering (3.19) as a special form of a system of linear differential equations with 
variable coefficients the stability of whose solutions is investigated, for example, in [4], 
we can readily establish that system (3.19) h as two eigenvalues whose sum is zero. Hence, 
the only possible case in which system (3.19) can have a bounded solution is when each of 
its eigenvalues is equal to zero. The necessary condition for this is that 

11 (cp*) -, 0 as t-+ 00 (3.20) 

since fulfillment of this condition means that system (3.19) has eigenvalues equal to the 

eigenvalues of the system with constant coefficients 

dzl I dt = z,, dz, / dt = 0 (3.21) 

which results from the initial system upon elimination of the terms with variable coefficients. 
System (3.21) has two eigenvalues equal to zero. Condition (3.20) is not fulfilled, so that 

system (3.19) has an eigenvalae smaller than zero, and motion (3.15) under investigation is 
unstable. 

Thus, Eq. (3.2) has a periodic solution (3.14) for I,, f 0; the necessary condition for the 
stability of the solution is inequality (3.18), 

N 

110 = 2 k (- aok sin kx + bOk cos kx) 

k=l 
for n = 0 (3.22) 

where x is the solution of Eq. 
N 

Zoo = 2 (aor cos kX + bob sin kx) = 0 

A=1 
(3.23) 
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Writing the expressions for I,, and I,, as 

N 
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N 

100 = Lf @, sin (fq + *,.I 

h-=1 

and rejecting the solution x = - r&, x = - $ + rf of eq. (3.23) (this solution car sponds to 
the limiting condition $k = ktb), we can establish that the quantity \1,o 1 = s” tla2 is a fixed 
sign quadratic form of the quantities @a, sud hence of aok and 60~ for values of X equal to 
the roots of Eq. (3.23) fork = 1, 2 only. 

Thus, only when the expression for the external force moment M, includes just two har- 
monics in the argument 9 can we draw a reliable conclusion concerning the stability or in- 
stability of the constructed periodic motion. We note that the expansion 

(A1 cos cp 3; B, sin (p) -S; (A, cos 29 -& 8, sin 234 

includes practically interesting casea of the gravitational force moment and the magnetic 
force moment computed under the assumption that the Earth’s magnetic field can be approxi- 
mated by a dipole whose axis coincides with that of the Earth. 

If the series I,,, and I to contain only the k-th harmonic, then Eq. (3.23) has the two solu- 

tionsk~+$~=Oandkx+~Lk=rr,whereIlo=-kA,<Oforkx+$/k=n. 

For n = &v/k the constants I,, and I,, are also reducible to the form (3.24), which in 

this case contains just one harmonic; hence, the necessary stability condition (3.18) is 
always fulfilled for periodic motions corresponding to the second case of (3.9). 

In the general case of a aperiodic solution (3.3) of Eq. (3.2) in which the value of X, in 
(3.6) is not a multiple of the quantity a,-, * we have a linear variation in time of the angular 

velocity of natural rotation of the satellite which is proportional to the second power of the 
small parameter Fro. With this kind of variation the quantity dv/dt very likely attains a 
level dq/dt = nu,, ’ for which the required conditions for stability of the periodic motion are 
fulfilled. 

Thus, the steady motion of a spacecraft about the oriented axis under the action of a 
small external force moment is always a periodic state in which the quantity dq/dt varies 
periodically and with a small amplitude about some level which is a multiple of the frequen- 
cy of revolution of the sateilite along its orbit. This justifies to some extent the assump 
tion that the quantity dq/dt is constant which we made in investigating the motion of the 
craft axis. 
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